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Metastable configurations on the Bethe lattice
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We present a general analytic method to compute the number of metastable configurations as a function of
the energy for a system of interacting Ising spins on the Bethe lattice. Our approach is based on the cavity
method. We apply it to the case of ferromagnetic interactions, and also to the binary and Gaussian spin glasses.
Most of our results are obtained within the replica symmetric ansatz, but we illustrate how replica symmetry
breaking can be performed.
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I. INTRODUCTION

Despite years of efforts, the nature of the glassy phas
finite-dimensional spin glasses is still not clear. It is s
debated whether the replica symmetry breaking~RSB!
scheme proposed by Parisi to solve the mean field fully c
nected Sherrington-Kirkpatrick model~SK!, and implying
the existence of an exponentially large number of pure st
with an ultrametric structure, holds in some way for the
systems. Part of the difficulty to settle the question is
very poor analytical tractability of finite-dimensional sy
tems.

Looking for more realistic—but still tractable—mode
than SK, much attention was recently paid to spin glasse
random graphs of finite connectivity. These models incor
rate the short range nature of interactions, but without
underlying geometry of the finite-dimensional models. It h
been shown that the replica symmetric~RS! solution of spin
glasses on random graphs of finite connectivity is unstabl
low temperature@1,2#. Unfortunately, working out the RSB
scheme is far more difficult than for the SK because
glassy phase can no longer be characterized by the only
spin overlap^sasb& between two distinct replicasa and b,
but requires all of the multispin overlaps. Recently, a diff
ent approach was suggested in Ref.@3#, based on the cavity
method and population algorithms, that allows for a nume
cal solution at the level of one step RSB~1RSB!. The
method can be virtually extended to any step of RSB, at
price of increasing computer resources.

In this paper, we use similar ideas to shed a new light o
an old problem: the computation of the number of metasta
configurations. A configuration is said to be metastable if
energy cannot be decreased by flipping a single spin.
expects, within the RSB scenario, that a consequence at
temperature of the exponential number of pure states is
exponential number of metastable configurations. Note, h
ever, that these two concepts are not as obviously linked
might seem: in systems with finite connectivity, the zero te
1063-651X/2003/67~2!/026116~10!/$20.00 67 0261
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perature limit of the pure states are not the metastable c
figurations, but are argued to be the configurations sta
with respect to an arbitrary finite number of spin flips@4,5#.

Let us call configurational entropySC(E) the logarithm,
divided by the number of spins, of the number of metasta
configurations having an energy density equal toE. Lots of
efforts have been devoted to the study ofSC for SK. More
recently, attention turned to spin systems on random gra
On random graphs with fixed finite connectivity, anneal
computations were carried out for the binary spin glass@6#,
and the ferromagnet was addressed in Ref.@7#. On random
graphs of fluctuating finite connectivity, the case of the f
romagnet was solved in Ref.@9#—also via a population al-
gorithm, but in a different context as ours—and the auth
give hints how to address the quenched computation of s
glasses.

Our method, which is quite general, enables us to reco
all the above results. As contributions, we carry o
quenched computations in the case of the Gaussian or bi
spin glass on random graphs of fixed finite connectivity, a
we exemplify the implementation of 1RSB.

In the following, we stick to the case of random graphs
fixed finite connectivity. For the sake of concision, we d
play no result about the fluctuating connectivity, but it is ea
to generalize our method to this case.

The layout of the paper is the following. In Sec. II, w
give several definitions and we set the notations. In Sec.
we derive our basic equations in the RS framework. In S
IV, we analytically solve these equations in the case o
ferromagnet. We compare our results with the microcano
cal approach of Ref.@7#. In Sec. V, we turn to the binary spin
glass, where the coupling constants are61. The population
algorithm shows up there. In Sec. VI, we address the sligh
more involved Gaussian spin glass. Eventually, in Sec. V
we show how to perform 1RSB, and illustrate the algorith
on the case of the spin glass with binary couplings.

II. THE SYSTEM UNDER STUDY

Following Ref. @3#, we call the Bethe lattice a random
graph with fixed connectivity equal tok11, i.e., the number
©2003 The American Physical Society16-1
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FIG. 1. Part of a Cayley tree.
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of edges incident to each vertex is exactlyk11. Locally,
such a graph has the structure of a Cayley tree, and ca
obtained with the following procedure: starting from a ro
~or ancestor! C, one builds the first generation ofk11 sons,
and then successive generations ofk sons to each vertex, a
displayed in Fig. 1. By contrast to the Cayley tree, the Be
lattice has loops, but small ones are rare: the typical lengt
a loop is of order lnN. In a practical case, one uses t
treelike structure to write down recursive~or cavity in the
language of the physics of disordered systems@10#! equa-
tions, and the existence of loops is enforced by saying
all the spins are equivalent, which is not true for the Cay
tree ~in particular, the Cayley tree has strong boundary
fects!.

On each vertexA of the Bethe lattice stands a spin, an
these spins interact through the Hamiltonian

H52 (
$A,B%

JA,BsAsB , ~1!

where the sum runs over all the edges. The coupling c
stantsJA,B may be fixed, as in the case of the ferromagnet
they may be quenched random variables in the case of a
glass.

The local field acting on the spinA is HA
5(BPV(A)JA,BsB , where the sum runs over thek11 first
neighbors ofA. The metastable states are characterized
;A,HAsA>0. Our aim is to compute the partition functio
restricted to the metastable configurations:
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Z5TrFe2bH)
A

Q~HAsA!G , ~2!

whereQ is the heaviside step function such thatQ(u)51 if
u>0, 0 otherwise, and Tr stands for the summation over
the possible values of all the spins.

III. THE CAVITY EQUATIONS

Let us introduce, in close analogy with the construction
the infinite tree in Ref. @11#, a simple labeling rule for the
vertices of a tree: the sons of the root are labeled 1,2, . . . ,k.
Then recursively the sons of a vertex labeled (i 1••• i p) are
labeled (i 1••• i p 1), . . . (i 1••• i p k). If A5( i 1••• i p), we
can define thenorm of the symbol asuAu[p.

The basic building block of the cavity solution is a bran
of the Cayley tree, i.e., a subtree made of a given ver
different from the root and all its descendants. In Fig. 2
drawn a branch rooted atF. Let us call itTF .

The key property of a branch is that it is structurally sim
lar to each of its sub-branches made of a given vertex and
its descendants. This makes a recursive approach possib
study the thermodynamics of a branch. We will see aft
wards how to use the results for the Bethe lattice.

A. Computing the metastable states on a branch

As it will be clear later, on a branch it is convenient
require that all the spins are stables, except the root.
Hamiltonian of a branch is
FIG. 2. A branch.
6-2
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HF52 (
$A,B%PTF

JA,BsAsB . ~3!

The definition of the partition function is

ZF5TrFe2bHF )
APTF\F

Q~HAsA!G . ~4!

By contrast to all the other spins inTF , which havek11
neighbors, spinF lacks one neighbor. In all the following
the local field acting on such a spin with onlyk neighbors
will be called a cavity field and denoted by a smallh ~here
hF). We callpF(h,s) the joint density probability ofhF and
the value of spinF. One has

pF~h,s!5
1

ZF
TrFe2bHFd~sF2s!

3 )
uAu>1

Q~HAsA!d~hF2h!G . ~5!

We callT1 , . . . ,Tk the subtrees ofTF engendered by point
1, . . . ,k. We can define their Hamiltonians similarly to E
~3!, and write

HF5(
i 51

k

Hi2hFsF . ~6!

Splitting the trace, Eq.~5! can be restated as

pF~h,s!5
1

ZF
ebhs Tr

s1 , . . . ,sk

d~hF2h! Tr
uAu>2

e2b( i 51
k Hi

3)
i 51

k

Q~His i ! )
uAu>2

Q~HAsA!. ~7!

Now separateHi into two contributions

Hi5(
j 51

k

Ji ,i j s i j 1JF,isF , ~8!

and enforce the fact that the first one is the cavity field act
on spini in the absence ofF through the identities

15E dhidS (
j

Ji ,i j s i j 2hi D . ~9!

Plugging Eqs.~8! and ~9! into Eq. ~7!, one gets
02611
g

pF~h,s!5
1

ZF
ebhs Tr

s1 , . . . ,sk

d~hF2h!)
i 51

k E dhiQ@~hi

1JF,is!s i # Tr
uAu>2

e2b(
i 51

k Hi )
uAu>2

Q~HAsA!

3)
i 51

k

dS (
j

Ji ,i j s i j 2hi D . ~10!

Comparing to Eq.~5!, it turns out that the second line in th
above equation is nothing but the product ofZipi(hi ,s i) for
i 51, . . . ,k. So one eventually obtains the following recu
sion relation:

pF~h,s!5
Z1•••Zk

ZF
ebhs Tr

s1 , . . . ,sk

d~hF2h!)
i 51

k

3E dhiQ@~hi1JF,is!s i #pi~hi ,s i !. ~11!

By averaging over the coupling constants and the rand
graphs~operation denoted by•••), one defines the probabil
ity distributions P F

(h,s)(p)5d„pF(h,s)2p… Equation ~11!
induces a functional relation betweenP F

(h,s) and the analo-
gous probability distributionsP i

(h,s) for i 51, . . . ,k. In the
Bethe lattice, all spins are required to be equivalent so
impose the condition

; i , PF5Pi5P. ~12!

This yields a self-consistency equation forP.

B. Performing measures on the Bethe lattice

Having solved the thermodynamics of a branch, the id
of Ref. @3# is to describe the Bethe lattice as the result of
merging of several branches. We define two merging pro
dures.

FIG. 3. Result of the merging~M2! of two branches.
6-3
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~M1! Take k11 branches, with roots labeledi
51, . . . ,k and merge them onto a new spinC. The resulting
tree is the one of Fig. 1.

~M2! Take two branches, with roots labeled 1 and 2, a
merge themvia a new bond of coupling constantJ, without
adding any site. See Fig. 3.

Operation~M1! is very similar to the iteration Eq.~11!:
the differences are thatk is to be substituted byk11, and
one must enforce the stability of the spinC. After the merg-
ing, the joint density probability of the value of spinC and
the local fieldHC acting on it isPC(H,s), given by

PC~H,s!5
Z1•••Zk11

Z
ebHsQ~Hs! Tr

s1 , . . . ,sk11

d~HC

2H !)
i 51

k11 E dhiQ@~hi1JC,is!s i #pi~hi ,s i !.

~13!

Summing over all the possible (H,s) and taking the loga-
rithm, one gets the variation of the free energy of the sys
during the merging

DF152
1

b
lnF(

s
E dHebHsQ~Hs! Tr

s1 , . . . ,sk11

d~HC

2H !)
i 51

k11 E dhiQ@~hi1JC,is!s i #pi~hi ,s i !G
52

1

b
lnF Tr

s,s1 , . . . ,sk11

ebHCsQ~HCs!

3)
i 51

k11 E dhiQ@~hi1JC,is!s i #pi~hi ,s i !G . ~14!

As far as operation~M2! is concerned, it is straightfor
ward to derive the variation of the free energy
02611
d

m

DF252
1

b
lnF Tr

s1 ,s2

ebJs1s2E dh1dh2Q@~h11Js2!s1#

3Q@~h21Js1!s2#p1~h1 ,s1!p2~h2 ,s2!G . ~15!

One can easily deduce the density of free energyF of the
Bethe lattice fromDF1 andDF2. Assuming that each branc
has a number of spins equal toN, the system after the merg
ing ~M1! hasN(k11)11 spins, and its free energy can b
written in two ways:

@N~k11!11#F5~k11!Fbranch1DF1, ~16!

whereFbranch is the free energy of one of the branches b
fore the merging. For operation~M2!, one has

~2N!F52Fbranch1DF2. ~17!

Elimination of Fbranch between the above equation
yields

F5DF12
k11

2
DF2. ~18!

Note that the above derivation holds for any extensive a
self-averaging observable. Thus, the density of energyE of
the Bethe lattice is

E5DE12
k11

2
DE2, ~19!

whereDE1, resp.DE2, is the variation of energy under th
merging process~M1!, respectively~M2!:
DE152(
s

E dHPC~H,s!Hs52

Tr
s,s1 , . . . ,sk11

HCsebHCsQ~HCs!)
i 51

k11 E dhiQ@~hi1JC,is!s i #pi~hi ,s i !

Tr
s,s1 , . . . ,sk11

ebHCsQ~HCs!)
i 51

k11 E dhiQ@~hi1JC,is!s i #pi~hi ,s i !

, ~20!

and

DE252J

Tr
s1 ,s2

s1s2ebJs1s2E dh1dh2Q@~h11Js2!s1#Q@~h21Js1!s2#p1~h1 ,s1!p2~h2 ,s2!

Tr
s1 ,s2

ebJs1s2E dh1dh2Q@~h11Js2!s1#Q@~h21Js1!s2#p1~h1 ,s1!p2~h2 ,s2!

. ~21!
6-4
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These results can be applied to a wide variety of models
to now we have not specified the coupling constants.

IV. THE FERROMAGNETIC CASE: AN EXACTLY
SOLVABLE MODEL

First, we concentrate on a simple case where all the ab
equations can be worked out analytically. The previous
malism allows for the computation of the metastable state
thek52 Ising ferromagnet. When the couplings all have t
same absolute valueuJu51, the cavity field can take only
value in the set (22,0,2). Thus, integration with respect
the hi in Eq. ~11! and other formulas reduces to a fini
summation. Moreover, in the case of the Ising ferromag
~i.e., J51) the system is homogeneous, therefore the ca
equations should not depend on the site index and we
define the joint probabilitiesp05p(h522,s521), p1
5p(h522,s51), p25p(h50,s521), . . . ,p55p(h
52,s51) of Eq. ~11! identically for all the lattice sites. A
simple enumeration shows that Eq.~11! reduces to the fol-
lowing system of equations:

cp0e2b5p1
2 , cp1e22b5p1

212p1p31p3
2 ,

cp252p1p212p1p4 ,
~22!

cp352p1p412p3p4 , cp4e22b5p2
212p2p41p4

2 ,

cp5e2b5p4
2 ,

together with the normalization condition( i 50
5 pi51. The

symmetries of the system fix some conditions on the val
of pi . The relationsp05p5 , p15p4 , p25p3 hold in the
paramagnetic phase~PA!. If the overall Z2 symmetry is
spontaneously broken the system encounters a ferromag
~FM! phase characterized byp25p35p45p550 ~obviously
there is also the solution with the opposite magnetization,
which p05p15p25p350). In the FM case the solution i
given by

p05
1

11e4b
, p15

1

11e24b
, c5

1

e22b1e26b
. ~23!

The solution in the PA case is slightly more involved

p05
cD4

64x5
, p15

cD2

4x
, p25

cD3

8x3
,

c5
1

2 F D4

64x5
1

D3

8x3
1

D2

4xG21

, ~24!

wherex5(e2b/4)1/3 andD5Ax412x2x2. The problem of
the iterative stability of both the FM and PA solutions can
addressed studying the spectrum of the Jacobian of the
tem of equations~22!. It turns out that the PA solution be

comes unstable below aTc
PA5 ln21(2A2

3 )52.039 091 and
the FM one aboveTc

FM52ln(2)52.885 390. Once we hav
02611
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calculated the cavity fields, we can measure the thermo
namic potential using the merging procedures explained
the proceding section.

Let us consider first the FM solution

DE1523, DF1523F12
1

b
ln~11e24b!G ,

~25!

DE2521, DF25
2

b
ln~11e24b!21.

Inserting Eq.~25! into Eqs.~18! and ~19!, we readily obtain
E5F52 3

2 , i.e., the system is completely frozen in i
ground state.

The PA solution is worked analogously.

DE152
N1

D1
, DF152

1

b
ln~D1!,

~26!

DE252
N2

D2
, DF252

1

b
ln~D2!,

where

N152p1
3~3eb1e3b!16p1

2p2~e3b12eb!

16p1p2
2~eb1e3b!,

D156p1
3~eb1e3b!16p1

2p2~3e3b12eb!

16p1p2
2~eb13e3b!16p2

3e3b,
~27!

N252p1
2e2b22~p11p2!2eb,

D252p1
2e2b12~p11p2!2eb,

and for thepi we use Eq.~24!. In Fig. 4, we display both
energy and free energy as a function of the temperat
Starting in the low temperature phase, the system g
trapped in the ferromagnetic solution in which all the sp
are aligned. This solution is locally stable for the iterati
@Eq. ~22!# up to temperatureTc

FM . We define Tc

52.228 512 as the temperature at which PA and FM so
tions have the same energy. Exactly at this temperature
have the coexistence of the two phases of the system. Ab
Tc, the PA solution acquires a lower free energy. In Fig.
we display the configurational entropySC(E) as a function
of the energyE. The thin straight line is tangent to the curv
exactly atSC(Ec), whereEc[E(Tc)521.056 13, while the
dotted curve beneath the tangent is the result of the mi
canonical computation of Lefe´vre and Dean presented i
Ref. @7#. Note that the microcanonical branch cannot be o
tained in our canonical scheme.

V. THE BINARY SPIN GLASS

Let us now turn to a slightly more complicated case, t
binary spin glass, where the coupling constants are quenc
6-5
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independent identically distributed~iid! random variables
with the following law:

l~J!5
1

2
@d~J21!1d~J11!#. ~28!

As in the above section, an important simplification occu
the local field acting on a spin can have only a finite num
of values. The cavity fields can havek11 values:2k,2k
12, . . . ,k, whereas the local field acting on a site withk
11 first neighbors can have (k12) values: 2k21,2k
11, . . . ,k11. But by contrast to the ferromagnet, the sy
tem is no longer homogeneous, and the self-consiste
equation~12! is a tricky object. To tackle a similar equatio
in Ref. @3# is suggested a numerical solutionvia a population
algorithm. The basic idea is that a probability distributi
can be represented by a large collection of iid random v
ables distributed according to it.

In our case, the algorithm works as follows: we use
large population ofN sites i 51, . . . ,N, each of which is
characterized by a finite set of 2(k11) numbers, the
pi(h,s). After random initialization, one iterates the follow
ing sequence:

FIG. 4. Thermodynamic potentialsE and F vs T for the ferro-
magnet in the casek52.

FIG. 5. Configurational entropySC vs E for the ferromagnet in
the casek52 ~see text!.
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1. Algorithm I

~i! Selectk12 sitesi 1 , . . . ,i k12 at random, and extrac
some couplingsJ1 , . . . ,Jk11.

~ii ! Perform the merging~M1! of the branches rooted a
i 1 , . . . ,i k11 onto the siteC5 i k12, that is, computeDF1
with Eq. ~14!, DE1 with Eq. ~20!.

~iii ! Perform the merging~M2! of the branches rooted a
i 1 and i 2, that is computeDF2 with Eq. ~15!, DE2 with Eq.
~21!, using for instance the couplingJ1.

~iv! Update the population: perform the merging of t
branches rooted ati 1 , . . . ,i k onto the siteF5 i k12, that is
substitutepk12(h,s) by the result of Eq.~11!.

The algorithm converges in a stochastic sense: after a
ficient number of iterations, thepi(h,s) are distributed ac-
cording toP. So one can compute the average of the th
modynamic quantities with respect to the couplings by ti
averaging of the measures performed in steps~ii ! and ~iii !.

In the practical implementation of the algorithm, we ha
scanned values ofN ranging from 200 to 4000. A carefu
finite size scaling analysis shows that results are re
mildly dependent onN as soon asN.1000, and the
asymptotic extrapolation is always compatible, within stat
tical errors, with the biggest size we have simulated. T
errors are calculated with standard binning procedure,
carding the first half of the simulation. In this way we have
complete control on thethermalization of the algorithm.
Most of the simulations have been performed also for
same system removing the stability condition on the lo
fields. We will always refer to these data as AC~all configu-
rations! to distinguish them from the metastable~MS! set of
data. For most of the simulations we have performed fr
1033N up to 1043N iterations of Algorithm I, which we
have verified to be enough both for thermalization and
merical accuracy.

The configurational entropySC is the MS entropy.
One should also note that in the case of the Bethe latt

the choice of the distribution@Eq. ~28!# is not crucial and the
same results hold in the case of a distributionl(J)5pd(J
21)1(12p)d(J11) regardless of how smallp is and even
in the limiting case of a purely antiferromagnetic syste
This observation allows for the analytic computation of t
critical temperature and the critical energy of this mod
Following the route specified in Sec. IV, we calculated t
equivalent of the system of equations~22! for purely anti-
ferromagnetic couplings. The stability analysis of the pa
magnetic solution gives the same temperature of the

case, i.e., Tc5 ln21(2A2
3 ) and Ec[E(Tc)5215/14

'21.071 429. Below this temperature~energy! the replica
symmetry is spontaneously broken.

In Fig. 6, we display the logarithm of the number of met
stable states as a function of the energy. In the inset
magnify the results for the lowest energies. It is interesting
note that in the regionE,21.22, both AC and MS entropie
seem to behave linearly onE, and a linear fit works really
well. The two curves meet atE521.273(5) and S
50.0172(5). This energy is clearly compatible with the rep
lica symmetric value of the ground stateE0

RS5223/18
521.277 777@12#. We have an excess of entropy atE0

RS
6-6
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METASTABLE CONFIGURATIONS ON THE BETHE LATTICE PHYSICAL REVIEW E67, 026116 ~2003!
which is proportional to the density of spins with zero loc
field in the ground state—such a spin can be flipped with
changing the energy. Note that numerical simulations@13#
find an entropy of the ground stateS50.010(1), notthat far
from our RS prediction. As far as the ground state energ
concerned, these simulations giveE521.2719(5), which is
compatible with the result of a 1RSB computationE;
21.2717@4#. Therefore, quantitative effects of RSB on th
model are rather small, and RSB beyond the second ord
expected to yield small corrections.

In Fig. 7, we compare our data with the annealed appro
mation presented in Ref.@7#, while in inset, we magnify the
differenceSann(E)2S(E) in the regionE,Ec . Above this
value the annealed approximation is believed to be ex
and in fact our data fall on the analytic curve within the er
bars, while belowEc , the two curves split. It is interesting t
note that the splitting, barely visible in the main panel f
E.21.2, seems to be exponential, at least nearEc ~note the
logarithmic scale on they axis of inset!.

FIG. 6. Entropy vsE for the binary spin glass in the casek
52. Inset: magnification of the low-energy region. MC with A
without one spin-flip stability condition.

FIG. 7. Entropy vsE for the binary spin glass in the casek
52: comparison of the quenched and annealed results. Inset
largement of the difference between the annealed and metas
~MS! entropy.
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Let us stress here that it is straightforward to adapt
algorithm to the case of random graphs of fluctuating c
nectivity of finite meanc. In such a graph, given two points
there is an edge connecting them with probabilityc/N, and
no edge with probability 12c/N. Thus, the number of firs
neighbors of a given site is a random variable distribu
according to a Poisson law of meanc. To implement this, one
must extract the numberk11 according to this law in step
~i!. The rest is unchanged, except the important fact that
~iv! is no longer to be performed withk branches, but with
k11 branches, like step~ii ! and that thek11 term in Eqs.
~18! and ~19! should be replaced byc @8#.

VI. THE GAUSSIAN SPIN GLASS

Our method can tackle even more complicated cases, s
as the Gaussian spin glass, in which the coupling const
are quenched iid random variables whose law is a Gaus
with unit variance and zero mean.

The local fields are now continuous variables. We cho
to represent the probability distributionpi(h,s) on a site by
a large population ofL couples (h,s) distributed according
to pi .

So on each sitei 51, . . . ,N, we have a population
(hi

n ,s i
n),n51, . . . ,L. The algorithm’s layout is similar to

Algorithm I.

1. Algorithm II

~i! Selectk12 sitesi 1 , . . . ,i k12 at random, and extrac
some couplingsJ1 , . . . ,Jk11.

~ii ! Perform the merging of the branches rooted
i 1 , . . . ,i k11 onto the siteC5 i k12. In the context of this
algorithm, Eqs.~14! and ~20! become

DF152
1

b
lnF (

n51

L

(
s561

ebHC
n sQ~HC

n s!

3)
j 51

k11

Q@~hi j

n 1Jjs!s i j

n #G , ~29!

n-
ble

FIG. 8. Entropy vsE for the Gaussian spin glass. Inset: ener
vs T[1/b. Lines are power-law fits of the low-T region. Note that
both curves extrapolate atT50 to the same value~see text!.
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DE152

(
n51

L

(
s561

HCsebHC
n sQ~HC

n s!)
j 51

k11

Q@~hi j

n 1Jjs!s i j

n #

L k11 , ~30!
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(
n51

(
s561

ebHC
n sQ~HC

n s!)
j 51

Q@~hi j

n 1Jjs!s i j

n #

where HC
n 5 (

j 51

k11

Jjs i j
.

~iii ! Perform the merging of the branches rooted ati 1 andi 2, using for instance the couplingJ1. The formulas~15! and~21!
read

DF252
1

b
lnF (

n51

L
ebJ1s i 1

s i 2Q@~hi 1
n 1J1s i 2

n !s i 1
n #Q@~hi 2

n 1J1s i 1
n !s i 2

n #G , ~31!

DE252J1

(
n51

L
s i 1

s i 2
ebJ1s i 1

s i 2Q@~hi 1
n 1J1s i 2

n !s i 1
n #Q@~hi 2

n 1J1s i 1
n !s i 2

n #

(
n51

L
ebJ1s i 1

s i 2Q@~hi 1
n 1J1s i 2

n !s i 1
n #Q@~hi 2

n 1J1s i 1
n !s i 2

n #

. ~32!
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~iv! Update the population, performing the merging of t
branches rooted ati 1 , . . . ,i k onto the siteF5 i k12: one
wants to substitute the (hF

n ,sF
n ),n51, . . .L with a new

population distributed according topF(h,s) of Eq. ~11!.
This is the following performed in two steps

~a! First, one makes a list (h̃n,s̃n),n51, . . . ,L as fol-
lows. Start withn51. Enter a loop in which you extrac
randomly ann8P$1, . . . ,L% and a spin values561, until

you have the stability condition; j P$1, . . . ,k%,(hi j

n8

1Jjs)s i j

n8>0. Then seth̃n5( j 51, . . . ,kJjs i j

n8 and s̃n5s.

Incrementn, and enter the loop again.

~b! The list (h̃n,s̃n) is not the one to overwrite the
(hF

n ,sF
n ) because one must enforce the presence of the

tor ebhs in Eq. ~11!. Thus, the elements of the list are to b
reweighted: a suitable new population (hF

n ,sF
n ),n

51, . . . ,L is obtained by repeatingL times the process o
picking an element in the list (h̃n,s̃n),n51, . . . ,L with a
probability proportional toebh̃ns̃n

.
We implemented the above algorithm in the casek52,

using the valuesN51000 andL51000. The results are pre
sented in Fig. 8. By contrast with the binary spin glass,
ground state is not degenerated. So both entropies AC
MS go to 0 at the energy density of the ground stateEGS.
Using the algorithm of Ref.@3# at a low temperature an
extrapolating the results toT50, one finds EGS
521.12(1), which is compatible with our data@14#.

VII. BREAKING THE REPLICA SYMMETRY

Let us now see how our method can be generalized
perform RSB.
02611
c-

e
nd

to

A. General considerations

So far, we have assumed there is a single pure state, s
under the iteration process. It is well known that this is a
tually not true for the spin glass on the Bethe lattice@3#. One
should allow for an infinite number of pure states as d
scribed by the hierarchical continuous RSB scheme propo
by Parisi@10#. As a first approximation, one can impleme
the 1RSB scheme. Briefly speaking, one assumes that t
exists an infinite number of pure states labeled bya
51, . . . ,1`. The free energies of the states on one bran
are independent identically distributed random variabl
with an exponential density

r~F !5exp@bx~F2FR!#, ~33!

whereFR is a reference free energy, andx is Parisi’s param-
eter@10#. In this approach, one computes the average va
of the observables as a function ofx. The physical value ofx
is the one which maximizes the free energy.

If one considers a branch rooted at siteF, in each pure
statea, the probability distributionpF

a (h,s) is different, and
the iteration@Eq. ~11!# is valid only inside a given pure state
The self-consistency equation to be solved is conseque
more complicated than in the replica symmetric case. Le
write pi(h,s)5@pi

a(h,s)#a51, . . . . One is interested in the
set of probability distributionsQ F

(h,s)(p)5d„pF(h,s)2p…,
which are functionals of the analogous quantitiesQ i

(h,s) ,
and one asks for all of them to be equal. A comprehens
theoretical description of the extension of the cavity meth
to 1RSB can be found in Ref.@3#.

Let us turn to the description of the algorithm. We use
population ofN sites i 51, . . . ,N, M statesa51, . . .M.
On each site, each state is characterized by its own distr
tion pi

a(h,s). Depending on the distribution of the couplin
6-8
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constants,pi
a(h,s) is represented as a set of 2(k11) num-

bers~case of binary couplings!, or again as a population ofR
couples (h,s) ~case of Gaussian couplings!.

The RS Algorithm I is nested into the present algorithm
is used to implement the iteration~11! and compute the ex
pectation values of the observables inside each state. Th
meta-algorithm takes into account all the states, with app
priate weights, to update the population and compute
global expectation values. Two new observables are requ
with respect to the RS case. First the variation of the f
energy during the iteration process described by Eq.~11!:

DFiter52
1

b
lnF Tr

s,s1 , . . .sk

ebhFs)
i 51

k E dhiQ@~hi

1JF,is!s i #pi~hi ,s i !G . ~34!

Second the derivative of the free energyF with respect tox.
By derivation of Eqs.~14! and ~15!, one gets

dF

dx
52

F

x
1d12

k11

2
d2, ~35!

where

d15
1

x

(
a

DF1
ae2bxDF1

a

(
a

e2bxDF1
a

, ~36!

and similarly ford2.
An iteration of the algorithm goes as follows:

1. Algorithm III

~i! Perform step~i! of Algorithm I.
~ii ! For each statea, perform steps~ii !, ~iii !, and ~iv!

~computing en passantDFiter
a ), of Algorithm I. One gets

quantities bearinga as a superscript:DF1
a ,•••.

~iii ! Reweight the states: this is a crucial step, motiva
in Ref. @3#. The states with lowDFiter

a have to be favored
Thus one picks upM times an element in the list of distri
butionspF

a ,a51, . . . ,M with a probability proportional to
exp(2bxDFiter

a ). The resulting list overwrites the one at si
F. @Note that the elements one picks up are composite
jects, i.e., either a set of 2(k11) numbers or a population o
R couples#.

~iv! Compute the global average values of the observa
DF1 ,•••. The formulas can be found in Ref.@3#:

DF152
1

bx
lnF 1

M (
a

e2bxDF1
aG , ~37!
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DE15

(
a

DE1
ae2bxDF1

a

(
a

e2bxDF1
a

, ~38!

and their obvious analogs forDF2 andDE2. Note that it is
essential that the sites and couplings be the same for all tha
in step~ii ! above.

In practice, we found that the implementation of this a
gorithm in the case of the Gaussian couplings requires
many computer resources to reach a satisfying accuracy
we limited ourselves to the case of binary couplings.

B. Application to the binary spin glass

We considered the binary spin glass of Sec. V, at temp
ture T50.5. Our implementation used the valuesN51000
andM51000. We computeddF/dx for several values ofx.
The result is presented is Fig. 9. To determine the valuex*
of x wheredF/dx is zero, we fitted the curve by a polyno
mial of degree 4, and found its roots. We gotx* 50.19(1).
Then we measured the thermodynamic quantities fox
5x* , taking into account the uncertainty onx* :

F521.28060.001, E521.26560.001,
~39!

S50.02960.001.

This is to be compared to the output of the replica sy
metric algorithm of Sec. V:

F521.281660.0008, E521.268560.0006,
~40!

S50.027460.0008.

The overall improvement is small, particularly onF. It is
more obvious onE andSbut still only of the order of 1023.

FIG. 9. dF/dx vs x for the binary spin glass in the casek52 at
T50.5; the continuous line is the polynomial fit of degree 4.
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VIII. CONCLUSION

In this paper, we have described a general procedur
compute the number of one-spin-flip stable configurations
the Bethe lattice. Given some integerp>2, the method—at
least conceptually—can be easily generalized to compute
number ofp-spin-flips stable configurations, i.e., whose e
ergies cannot be decreased by flipping a number of s
ranging from 1 top. The practical difficulty is that the recur
sion relations can no longer involve only quantities related
the root of a branch, but must also take into account thp
21 successive generations of spins. In the casep52, it
remains quite straightforward to write down the equatio
but we have not worked out their solution. It might be inte
esting to do so in order to clarify the nature of the ze
02611
to
n

he
-
ns

o

,
-

temperature limit of the pure states: recently Me´zard and
Parisi@4# presented a computation at 1RSB level of the nu
ber of locally ground states~LGS!, i.e., configurations stable
with respect top-spin flips with the numberp going to infin-
ity with the size of the system in some unprecised way, a
they found some surprising features. There is a need
more precise definitions, and one of the points at issue
how these LGS are related top-spin flips stable configura
tions whenp→1`.
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