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Metastable configurations on the Bethe lattice
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We present a general analytic method to compute the number of metastable configurations as a function of
the energy for a system of interacting Ising spins on the Bethe lattice. Our approach is based on the cavity
method. We apply it to the case of ferromagnetic interactions, and also to the binary and Gaussian spin glasses.
Most of our results are obtained within the replica symmetric ansatz, but we illustrate how replica symmetry
breaking can be performed.
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[. INTRODUCTION perature limit of the pure states are not the metastable con-
. flgurations, but are argued to be the configurations stable
~ Despite years of efforts, the nature of the glassy phase Qjjii respect to an arbitrary finite number of spin fli@s5].
finite-dimensional spin gIas;es is still not clear._ It is still | et us call configurational entrop$c(E) the logarithm,
debated whether the replica symmetry breaki®SB)  divided by the number of spins, of the number of metastable
scheme proposed by Parisi to solve the mean field fully coneonfigurations having an energy density equaEtd_ots of
nected Sherrington-Kirkpatrick modéBK), and implying efforts have been devoted to the studySpf for SK. More

the existence of an exponentially large number of pure staterecently, attention turned to spin systems on random graphs.
with an ultrametric structure, holds in some way for theseOn random graphs with fixed finite connectivity, annealed
systems. Part of the difficulty to settle the question is thecomputations were carried out for the binary spin gldds
very poor analytical tractability of finite-dimensional sys- @nd the ferromagnet was addressed in [Ref. On random
tems. graphs of fluctuating finite connectivity, the case of the fer-

Looking for more realistic—but still tractable—models romagnet was solved in Ref9]—alsovia a population al-

han SK h . I id in al orithm, but in a different context as ours—and the authors
than SK, much attention was recently paid to spin glasses 0give hints how to address the quenched computation of spin

random graphs of finite connectivity. These models incorpo—g|asses_

rate the short range nature of interactions, but without the  Qur method, which is quite general, enables us to recover
underlying geometry of the finite-dimensional models. It hasall the above results. As contributions, we carry out
been shown that the replica symmetirS) solution of spin  quenched computations in the case of the Gaussian or binary
glasses on random graphs of finite connectivity is unstable &tpin glass on random graphs of fixed finite connectivity, and
low temperaturd1,2]. Unfortunately, working out the RSB we exemplify the implementation of 1RSB.

scheme is far more difficult than for the SK because the In the following, we stick to the case of random graphs of
glassy phase can no longer be characterized by the only twéxed finite connectivity. For the sake of concision, we dis-
spin overlap(o,0,) between two distinct replicas and b, play no result about the fluctua'qng connectivity, but it is easy
but requires all of the multispin overlaps. Recently, a differ-t0 géneralize our method to this case.

ent approach was suggested in H&l, based on the cavity The layout of the paper is the following. In Sec. Il, we

method and population algorithms, that allows for a numeri_givedse_veral d%finij[ions and we_seththeRg%tations. "Il Slecélll,
: ’ we derive our basic equations in the ramework. In Sec.
cal solution at the level of one step RSBRSB. The IV, we analytically solve these equations in the case of a

m_ethod can be _wrtually extended to any step of RSB, at th?’erromagnet. We compare our results with the microcanoni-
price of increasing computer resources.

) N . cal approach of Ref7]. In Sec. V, we turn to the binary spin
In this paper, we use S|m|Iqr ideas to shed a new light ont lass, where the coupling constants aré. The population
an old problem: the computation of the number of metastabl Igorithm shows up there. In Sec. VI, we address the slightly

configurations. A configuration is said to be metastable if itsyore involved Gaussian spin glass. Eventually, in Sec. VII

energy cannot be decreased by flipping a single spin. Onge show how to perform 1RSB, and illustrate the algorithm
expects, within the RSB scenario, that a consequence at zegp, the case of the spin glass with binary couplings.

temperature of the exponential number of pure states is an
exponential number of metastable configurations. Note, how- Il. THE SYSTEM UNDER STUDY
ever, that these two concepts are not as obviously linked as it

! ; L o Following Ref.[3], we call the Bethe lattice a random
might seem: in systems with finite connectivity, the zero tem g [3]

‘graph with fixed connectivity equal to+ 1, i.e., the number
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FIG. 1. Part of a Cayley tree.

of edges incident to each vertex is exadkly 1. Locally,

such a graph has the structure of a Cayley tree, and can be Z=Tr efﬁ}‘l;[ O(Haoa) |, (2
obtained with the following procedure: starting from a root

(or ancestor¥, one builds the first generation kf- 1 sons,  where® is the heaviside step function such tiatu) =1 if

and then successive generationkafons to each vertex, as =0, 0 otherwise, and Tr stands for the summation over all
displayed in Fig. 1. By contrast to the Cayley tree, the Bethene possible values of all the spins.

lattice has loops, but small ones are rare: the typical length of

a loop is of order IN. In a practical case, one uses the lll. THE CAVITY EQUATIONS
treelike structure to write down recursiyer cavity in the . ] ] .
language of the physics of disordered systdt®) equa- Let us introduce, in close analogy with the construction of

tions, and the existence of loops is enforced by saying thahe infinite treein Ref. [11], a simple labeling rule for the
all the spins are equivalent, which is not true for the Cayleyvertices of a tree: the sons of the root are labeled.1,2k.
tree (in particular, the Cayley tree has strong boundary ef-Then recursively the sons of a vertex labeleg (-i,) are

fects. labeled (y---ipl), ... (@1 - ipk). If A=(i;---ip), we
On each vertex of the Bethe lattice stands a spin, and can define theorm of the symbol agA|=p.
these spins interact through the Hamiltonian The basic building block of the cavity solution is a branch

of the Cayley tree, i.e., a subtree made of a given vertex
different from the root and all its descendants. In Fig. 2 is
H= _{AEB} JABOATE (1) drawn a branch rooted 4. Let us call itTg .

' The key property of a branch is that it is structurally simi-
where the sum runs over all the edges. The coupling con@" to €ach of its sub-branches made of a given vertex and all
stants], s may be fixed, as in the case of the ferromagnet, oits descendants. This makes a recursive approa}ch possible to
they may be quenched random variables in the case of a spiiudy the thermodynamics of a branch. We will see after-
glass. wards how to use the results for the Bethe lattice.

The local field acting on the spinA is Hp
=2gcya)Jasos, Where the sum runs over thet 1 first
neighbors ofA. The metastable states are characterized by As it will be clear later, on a branch it is convenient to
VA,H o4=0. Our aim is to compute the partition function require that all the spins are stables, except the root. The
restricted to the metastable configurations: Hamiltonian of a branch is

A. Computing the metastable states on a branch

11 12 k21 22 %k k1 k2 - kk

@
FIG. 2. A branch.
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The definition of the partition function is

Zo=Trle Ao [ O(Hpon|. (4)
AcTp\®

By contrast to all the other spins iRy, which havek+ 1 FIG. 3. Result of the mergingM2) of two branches.
neighbors, spinb lacks one neighbor. In all the following,

the local field acting on such a spin with ortyneighbors 1 k

will be called a cavity field and denoted by a smial(here po(h,o)=—ef Tr 5(h¢_h)H dh®[(h,
he). We callpg(h, o) the joint density probability ofig, and Zg op. 0k i=1

the value of spirb. One has

kK H;
+J(D,i0-)0-i] Tr eiﬁzi:l @(HAO'A)

|A|=2 |A[=2

1
pa(h,o)= ZTF e Pl s(ogp— o)

k
X]___[l 5(2 ‘]i,ijo-ij_hi)' (10)
= J

x‘ﬂl O(Haop) 8(hg—h)[. (5
. Comparing to Eq(5), it turns out that the second line in the
We callTy, ... Ty the subtrees of, engendered by points ahove equation is nothing but the productZep; (h; ,o;) for
1,... k We can define their Hamiltonians Slmllarly to Eq i=1,... K. So one eventua”y obtains the fo”owing recur-
(3), and write sion relation:
k
Ho=2, Hi—hyog. (6) o K
i=1 _cr K Bho
Po(h.0)=—5—e"" Tr she—h)]]
(] Tl oK i=1

Splitting the trace, Eq(5) can be restated as
Xf dh®[(hij+Jg jo)oilpi(hi,o9). (1D

1
pd>(h,<f)=zeﬁh" Tr o(hg—h) Tr e A2-a%

TLy 0k |A[=2 By averaging over the coupling constants and the random
k graphs(operation denoted by- -), one defines the probabil-
><H O(Hoy) H O(Hpon). (7) ity distributions Pg"”)(p)= 8(py(h,o)—p) Equation (11)
=1 |A1=2 induces a functional relation betwe@H!*) and the analo-

gous probability distribution@i(h’”) fori=1,... k. In the
Now separatéd; into two contributions Bethe lattice, all spins are required to be equivalent so we
impose the condition

k
= I, I
H; jzl ‘]I,IJO-I] ‘J(D,IO-(D! 8 Vi, Pp=P,="P. (12

and enforce the fact that the first one is the cavity field actin

on spini in the absence ob through the identities rhis yields a self-consistency equation fr

B. Performing measures on the Bethe lattice

1:f dh; 5( > Jiijoi _hi)- 9 Having solved the thermodynamics of a branch, the idea
! of Ref.[3] is to describe the Bethe lattice as the result of the
merging of several branches. We define two merging proce-
Plugging Eqs(8) and(9) into Eg. (7), one gets dures.
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(M1) Take k+1 branches, with roots labeled 1
= k and merge them onto a new spih The resulting AF,=——In

Tr eBJo'la'Zj dhldh2®[(h1+\]0'2)0'1]
tree is the one of Fig. 1.

0’1,0'2

(M2) Take two branches, with roots labeled 1 and 2, and
merge thenvia a new bond of coupling constadt without XO[(hy,+Joy)o,]pi(hy,o1)pa(hy,o0) (. (15)
adding any site. See Fig. 3.

Operation(M1) is very similar to the iteration Eq(11): One can easily deduce the density of free endi@f the

the differences are thatis to be substituted bik+1, and  Bethe lattice fromAF, andAF,. Assuming that each branch
one must enforce the stability of the spin After the merg-  has a number of spins equallth the system after the merg-
ing, the joint density probability of the value of spih and  ing (M1) hasN(k+1)+ 1 spins, and its free energy can by

the local fieldHg acting on it isPy(H,o), given by written in two ways:
Zl".ZkJrl BHo e
PW(H,U)=Te O(Ho) Tr S(Hy [N(k+21)+1]F=(k+1)Fprancnt AF4, (16)
TLrwv Tk+1
k+1 whereF,anch IS the free energy of one of the branches be-
—H)H dh®[(hi+Jy jo)oi]pi(h;, o). fore the merging. For operatidiM?2), one has
i=1
(13 —
(2N)F=2Fp;ancht AF,. (17)

Summing over all the possibleH;o) and taking the loga-
rithm, one gets the variation of the free energy of the system

during the merging Elimination of Fy.anch between the above equations

yields

1
AFI:——ln{E deeBH"G)(Ha) T S(Hy — k+1—
B o T1y ey Ok+1 F:AFl_TAFZ (18)

k+1

_ , 4T Jo:(h: o
H)iﬂl dh®L(hi+Jy io)ailpichi, o) Note that the above derivation holds for any extensive and

self-averaging observable. Thus, the density of en&rgf
the Bethe lattice is

=——In{ T efMv9O(Hyo)
O'U'l

k+1

— k+1—
x 11 dhi®[(hi+J\P,ia)(ri]pi(hi,ai)]. (14) E=AE,— —AE, (19
i=1

As far as operatiorfM2) is concerned, it is straightfor- whereAE;, resp.AE,, is the variation of energy under the

ward to derive the variation of the free energy merging procesgM1), respectively(M2):
k+1
Tt Hyoe v o(Hyo [T | dhorh+ay )alph o)
O, 07, ..., Ot i=1
AE,=- deP\I,(H,a)Hcr=— - = » (20
Tr eBH‘Pg(@(H«yU)H fdhi@)[(hiJrJqf,iO')O'i]pi(hi ,07)
0,01, Tt 1 i=1
and

Tr Uleemamf dh;dh,®[(h;+Jo)01]10[(hy+Joq) oz]1pi(hy,01)pa(hy,07)

AE,=—322% . (21)
Tr eﬁJUIUZJ’ dhdh,®[(h1+J0o,)01]0[(hy+Joq)o2]pi(hy,01)pa(hy,00)

01,02
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These results can be applied to a wide variety of models: upalculated the cavity fields, we can measure the thermody-

to now we have not specified the coupling constants. namic potential using the merging procedures explained in
the proceding section.
IV. THE FERROMAGNETIC CASE: AN EXACTLY Let us consider first the FM solution

SOLVABLE MODEL

1
. . =— = - — —4B
First, we concentrate on a simple case where all the above AE, 3, ARy 31 B In(1+e""7)1,

equations can be worked out analytically. The previous for- (25)
malism allows for the computation of the metastable states of 2
thek=2 Ising ferromagnet. When the couplings all have the AE,=-1, AF2=E|H(1+ e %) -1

same absolute valugl|=1, the cavity field can take only

value in the set £2,0,2). Thus, integration with respect t0 |nserting Eq.(25) into Egs.(18) and(19), we readily obtain
the h; in Eq. (11) and other formulas reduces to a finite E=F=-2, ie., the system is completely frozen in its
summation. Moreover, in the case of the Ising ferromagnebround state.

(i.e.,J=1) the system is homogeneous, therefore the cavity The pA solution is worked analogously.

equations should not depend on the site index and we can

define the joint probabilitiespy=p(h=—-2,0=-1), p; N 1
=p(h=-20=1),  p,=p(h=0,0=-1), ... ps=p(h AB=—p AR= gDy,
=2,0=1) of Eq. (11) identically for all the lattice sites. A (26)
simple enumeration shows that Ed1) reduces to the fol- N, 1
lowing system of equations: AE,=— D, AF,=— EIn(DZ),
2
cpoe®=pi, cpie *F=pi+2p;ps+p3,
where
CP2=2p1P2+2p1Ps, N,=2p3(3e’+e*F)+6p3p,(e3F + 2¢ef)
(22)
CPs=2p1Pat2PsPa, CPse” P=p3+2p,patpi, +6pp3(ef+e®h),
cpse?P=p3, D,=6p3(ef+e%) +6p2p,(3e*F+2eF)
together with the normalization conditioB>_,p;=1. The +6p,p3(ef+3e%h)+6p3e’”,
symmetries of the system fix some conditions on the values (27)
of p;. The relationspy=ps, P1=PpPs, P>=p3 hold in the N,=2pie P—2(p,+p,)2e?,
paramagnetic phaséPA). If the overall Z, symmetry is
spontaneously broken the system encounters a ferromagnetic D,=2p%e #+2(p;1+p,)2e”,

(FM) phase characterized Ipg=p3;=p.=ps=0 (obviously

there is also the solution with the opposite magnetization, foend for thep; we use Eq(24). In Fig. 4, we display both
which po=p;=p,=p3=0). In the FM case the solution is energy and free energy as a function of the temperature.
given by Starting in the low temperature phase, the system gets
trapped in the ferromagnetic solution in which all the spins

poz;, p,= 1 . c= . (23 are aligned. This solution is locally stable for the iteration
1+e* 1+e 48 e Pt+e 6k [Eq. (22)] up to temperatureT-™. We define T,
o o ) =2.228 512 as the temperature at which PA and FM solu-
The solution in the PA case is slightly more involved tions have the same energy. Exactly at this temperature, we
4 2 3 have the coexistence of the two phases of the system. Above
ch ch cDh : . .
Po=——=s, P1=——, P2=—xz, Tc, the PA solution acquires a lower free energy. In Fig. 5,
64x° 4x 8x3 we display the configurational entrof8g(E) as a function
of the energyE. The thin straight line is tangent to the curve
1/ p* D3 D2t exactly atSc(E,), whereE.=E(T.)= — 1.056 13, while the

T2

' (24 dotted curve beneath the tangent is the result of the micro-
canonical computation of Lefee and Dean presented in

_ (a2B/1\1/3 _ 2 Ref.[7]. Note that the microcanonical branch cannot be ob-
wherex=(e“"/4)~* and D XA+ 2x—x2. The problem of tained in our canonical scheme.

the iterative stability of both the FM and PA solutions can be
addressed studying the spectrum of the Jacobian of the sys-
tem of equationg22). It turns out that the PA solution be- V. THE BINARY SPIN GLASS

comes unstable below 55A2|n71(2\/§)=2-039 091 and Let us now turn to a slightly more complicated case, the
the FM one abové’tf'\’I =2In(2)=2.885390. Once we have binary spin glass, where the coupling constants are quenched

_——+—
64x> 8x% 4X
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-0.9 T T T T T T T 1. Algorlthm |
-1.0 | EPA """"""""""""""""""""""" 7 (i) Selectk+2 sitesiq, ... i, 4o at random, and extract
11} ’ 1 some couplingdy, ... Jii1.
~ a2t (i) Perform the mergingM1) of the branches rooted at
& a3l il_, .. .Jksq1 ONtO the siteV=i,,,, that is, computeAF;
& with Eq. (14), AE; with Eq. (20).
o cl4r FFM _ P _ 1 (iii) Perform the mergingM2) of the branches rooted at
& s 1 i, andi,, that is compute\F, with Eq. (15), AE, with Eq.
Qo 76t 1 (21), using for instance the couplingy.
a7l oPA (iv) Update the populetion: perform the merging o_f the
branches rooted at, . .. ,i, onto the siteb=i,,,, that is
L8 ¢ TCPA T, T FM 1 substitutep,, »(h, o) by the result of Eq(11).
-1.9 i ! ! : ! £ ! The algorithm converges in a stochastic sense: after a suf-

o 05 1 15 2 25 3 35 4 ficient number of iterations, thp;(h,o) are distributed ac-

cording toP. So one can compute the average of the ther-
FIG. 4. Thermodynamic potentias andF vs T for the ferro-  modynamic quantities with respect to the couplings by time
magnet in the cask=2. averaging of the measures performed in st@ipsand (iii ).
In the practical implementation of the algorithm, we have
independent identica”y dIStrIbutedld) random Variables scanned values Q)f\/ ranging from 200 to 4000. A careful

with the following law: finite size scaling analysis shows that results are really
1 mildly dependent on\ as soon asN>1000, and the
M) =506 +86J+1)]. (28)  asymptotic extrapolation is always compatible, within statis-

tical errors, with the biggest size we have simulated. The

As in the above section, an important simplification occurs©/7ors are calculated with standard binning procedure, dis-

the local field acting on a spin can have only a finite numbe£2rding the first half of the simulation. In this way we have a
of values. The cavity fields can hake- 1 values:—k, —k complete conrrol on thehermalization of the algorithm.
+2,... k, whereas the local field acting on a site wkh Most of the srmulatrens have been performed also for the
+1 first neighbors can havek¢2) values: —k—1,—k same system removing the stability condition on tr_re local
+1,... k+1. But by contrast to the ferromagnet, the sys-/€/ds- We will always refer to these data as A4l configu-
tem is no longer homogeneous, and the self-consisten tiong to distinguish them frorn the metastalfdS) set of
equation(12) is a tricky object. To tackle a similar equation, d&t@- For most of the simulations we have performed from
in Ref.[3] is suggested a numerical solutivia a population 10°X M up to 10X\ iterations of Algorithm L V‘.’h'Ch we
algorithm. The basic idea is that a probability distribution "@V€ Verified to be enough both for thermalization and nu-
can be represented by a large collection of iid random variMerical accuracy. _
ables distributed according to it. The configurational entrop$c is the MS entropy. _

In our case, the algorithm works as follows: we use a One .should alse nete rhat in the case of the_ Bethe lattice,
large population of\ sitesi=1, ... N, each of which is the choice of the dretrrbutroqu. (28)] is nqt crucial and the
characterized by a finite set of R¢1) numbers, the Sa&M€ results hold in the case of a distributiof@) =p5(J

pi(h,o). After random initialization, one iterates the follow- 1)+ (.1_. P) o(J+1) regardiess of h9W smaplis ar_rd even
ing sequence: in the limiting case of a purely antiferromagnetic system.

This observation allows for the analytic computation of the
0.25 . _ ' . . critical temperature and the critical energy of this model.

Following the route specified in Sec. 1V, we calculated the
/ equivalent of the system of equatiof®2) for purely anti-
02t ; 1 ferromagnetic couplings. The stability analysis of the para-
| magnetic solution gives the same temperature of the FM
_oist ] case, ie., T.=In"2\%) and E,=E(T.)=-15/14
) ~—1.071429. Below this temperatufenergy the replica
2 eIt | symmetry is spontaneously broken.
: In Fig. 6, we display the logarithm of the number of meta-
: stable states as a function of the energy. In the inset we
005 1 magnify the results for the lowest energies. It is interesting to
TP L note that in the regiokE<—1.22, both AC and MS entropies
4 (4 H c . . .
0 . . . LEE seem to behave linearly dB, and a linear fit works really
-L5 -14 -1.3 -12 -L1 -1 0.9 well. The two curves meet aE=-1.273(5) andS
E =0.017Z5). This energy is clearly compatible with the rep-
FIG. 5. Configurational entrop$c vs E for the ferromagnet in  lica symmetric value of the ground stafef °= — 23/18
the casek=2 (see text =—1.277777[12]. We have an excess of entropy Bf>
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0.8 . . o
0.7 L0-10 s i |
0.08 o
0.6 | 0.06 L |
0.5 | 004 ]
_ AC —— | -
Y | 0.02 g ac —— S
- 0.00 '— s . 2
03 127 -125  -123
o2r I Hweeroeek
o1+ T
0.0 . - s . . . ) ]
-1.30 -1.25 -120 -1.15 -1.10 -1.05 -1.00 -0.95 -0.90 11 09 08 07 06 05 04 03 02 0l
; E
FIG. 6. Entropy vle for the binary spin gla§s in the gake FIG. 8. Entropy v<E for the Gaussian spin glass. Inset: energy
=2. Inset: ma_gnlf!catlon_c_)f the quy-energy region. MC with AC ys T=1/g. Lines are power-law fits of the lo@-region. Note that
without one spin-flip stability condition. both cutves oxtiapolate Tt to the same vallEes fo

which is proportional to the density of spins with zero local L€t us stress here that it is straightforward to adapt the
field in the ground state—such a spin can be flipped withoug!gorithm to the case of random graphs of fluctuating con-
changing the energy. Note that numerical simulatipt@] nect|v!ty of finite mearc. Irj such a grgph, g|ven.tlwo points,
find an entropy of the ground stafe=0.01Q(1), notthat far thered|s an_t([a_]dge EOQT_E?CTQ/tl\rlle_lmhw'tht#mbab'gm' ??_d .
from our RS prediction. As far as the ground state energy i 0 edge with probabilily L-CIIN. Thus, the number of 1rs
concerned, these simulations gize= — 1.27195), which is ne|ghbprs of a given site is a randqm variable d.|str|buted
compatible’ with the result of a 1RéB com;;utatim according to a Poisson law of mearTo implement this, one
L . + i [ i

—1.2717[4]. Therefore, quantitative effects of RSB on this must extract the numbde+1 according to this law in step

model are rather small, and RSB beyond the second order t! )1;2 en;els(;[rz grnfohzggsgr’fs;(:]zztc\t}ﬁqlggggﬁg f?)(;:tttcvziighstep
expected to yield small corrections. '

In Fig. 7, we compare our data with the annealed approxi!(+l branches, like stepi) and that thek+1 term in Eqs.

mation presented in Reff7], while in inset, we magnify the (18) and(19) should be replaced by (8]
differenceS,,,(E) — S(E) in the regionE<E.. Above this
value the annealed approximation is believed to be exact, VI. THE GAUSSIAN SPIN GLASS

and in fact our data fall on the analytic curve within the error - 5+ method can tackle even more complicated cases, such

bars, while belovE,, the two curves split. Itis interesting to 55 the Gaussian spin glass, in which the coupling constants

note that the splitting, barely visible in the main panel for 51 quenched iid random variables whose law is a Gaussian

E>—1.2, seems to be exponential, at least igamote the  \yith unit variance and zero mean.

logarithmic scale on thg axis of insef. The local fields are now continuous variables. We choose
to represent the probability distributign(h, o) on a site by

0.25 S . a large population ofZ couples b, o) distributed according
UNNEALED —— to p;. . .
So on each siteé=1,...,, we have a population
02 . - R
(h{,ay),v=1,...,L. The algorithm’s layout is similar to
Algorithm 1.
oI5}
- 107 fre g 1. Algorithm I
1
2 o} 105 | . 1 1 (i) Selectk+2 sitesiq, ... ,ixso at random, and extract
10% R i some couplingd,, ... Jxi1-
(iil) Perform the merging of the branches rooted at
005 -5 | z 1 1 . . . . .
107 | , i i1, ...,ke1 ONto the site¥=i,,,. In the context of this
127 117 -107 algorithm, Egs(14) and (20) become
-1.3 -125 -1.2 -1.15 -11 -1.05 -1 -095 -0.9 1 L
E AFy=—Zln > > e (HL0)
FIG. 7. Entropy vsE for the binary spin glass in the cake v=lo==1
=2: comparison of the quenched and annealed results. Inset: en- k+1
largement of the difference between the annealed and metastable X H O[(h{ +3;0)07]], (29)
(MS) entropy. j=1 j i
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k+1

Hyoe 10 Hyo) [T Or(h! +3,0)0! ]
j=1

eBHuo@ (
1

=1 o=*

where H{=

(30

k+1

Hg,a)j[[l O[(h!+Jj0)07]

k+1

z JjO’i_.
j=1 !

(iii ) Perform the merging of the branches rooted,a&ndi,, using for instance the coupliny. The formulag15) and(21)

read
L
1 B0 i v v v v v v
AF,=—Zln Z}l Mm@ (h! + 3107 )l 1O[(h +3107) 0l ], (31)
L
2, 0,01, 2701 (] +3107) o JOL(h] + 3107 )0 ]
AEZZ_J]_ L (32)

14

(iv) Update the population, performing the merging of the

branches rooted at, ..., onto the sited=i,,,: one
wants to substitute theh{,,oq),»=1,...L with a new
population distributed according tpg(h,o) of Eq. (11).
This is the following performed in two steps

(a) First, one makes a listh¢,o"),v=1, ... L as fol-
lows. Start withv=1. Enter a loop in which you extract
randomly anv’ €{1, ... £} and a spin valugr= *= 1, until
you have the stability conditionVje{1,... ,k},(hiVj'

.....

Incrementy, and enter the loop again.
(b) The list (h*,o") is not the one to overwrite the

| 1O (h], + 3107 )l JOL (N, + 3107 o]

A. General considerations

So far, we have assumed there is a single pure state, stable
under the iteration process. It is well known that this is ac-
tually not true for the spin glass on the Bethe lat{i8g One
should allow for an infinite humber of pure states as de-
scribed by the hierarchical continuous RSB scheme proposed
by Parisi[10]. As a first approximation, one can implement
the 1RSB scheme. Briefly speaking, one assumes that there
exists an infinite number of pure states labeled &y
=1,...,+. The free energies of the states on one branch
are independent identically distributed random variables,
with an exponential density

p(F)=exd Bx(F—FR)], (33

(hg , o) because one must enforce the presence of the fac-

tor e®"7 in Eq. (11). Thus, the elements of the list are to be
reweighted: a suitable new populationhg(,og),v
=1,... L is obtained by repeating times the process of
picking an element in the listh(’,0”),v=1, ... .L with a
probability proportional tae?f"" ",

We implemented the above algorithm in the case2,
using the valuegy= 1000 and = 1000. The results are pre-
sented in Fig. 8. By contrast with the binary spin glass, th
ground state is not degenerated. So both entropies AC a
MS go to 0 at the energy density of the ground stagg;.
Using the algorithm of Ref[3] at a low temperature and
extrapolating the results toT=0, one finds Egg
—1.121), which is compatible with our datgl4].

VII. BREAKING THE REPLICA SYMMETRY

whereFR is a reference free energy, ards Parisi’s param-
eter[10]. In this approach, one computes the average values
of the observables as a functionyofThe physical value ok
is the one which maximizes the free energy.

If one considers a branch rooted at sie in each pure
statea, the probability distributiompg (h, o) is different, and
the iteration Eq. (11)] is valid only inside a given pure state.
The self-consistency equation to be solved is consequently
f]rHore complicated than in the replica symmetric case. Let us
write p;(h,o)=[p{(h,0)],=1, ... One is interested in the
set of probability distributiong2 {)(p) = 8(pe(h, o) — p),
which are functionals of the analogous quantit@$™”,
and one asks for all of them to be equal. A comprehensive
theoretical description of the extension of the cavity method
to 1RSB can be found in Ref3].

Let us turn to the description of the algorithm. We use a
population of \ sitesi=1, ... N, M statesa=1, ... M.

Let us now see how our method can be generalized t®n each site, each state is characterized by its own distribu-

perform RSB.

tion pi*(h,o). Depending on the distribution of the coupling
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constantsp{*(h,o) is represented as a set ofk2{1) num- 0.01

bers(case of binary couplingsor again as a population @&

couples b,o) (case of Gaussian couplings 0.008 1
The RS Algorithm | is nested into the present algorithm: it

is used to implement the iteratidgdl) and compute the ex- 0.006 1

pectation values of the observables inside each state. Then

meta-algorithm takes into account all the states, with appro- x  0.004 | .

priate weights, to update the population and compute the

global expectation values. Two new observables are require: 0.002 1

with respect to the RS case. First the variation of the free

energy during the iteration process described by (Et). 0 .

1 k -0.002 —
AFje,=— =In Tr eﬁth(rH dh,®[(h, 0 01 02 03 04 05 06 07 08 09
0,01, ...0k =1 x

+J<I>,i0')0'i]pi(hi’0'i)l- (34)

Second the derivative of the free eneffgyith respect tax.
By derivation of Eqs(14) and(15), one gets

dF F N k+1 5
& = — ;‘Fd - Td y (35)
where
. EC; AFge™ PxaFY
dl=; , (36)

— BXAFY

and similarly ford?.
An iteration of the algorithm goes as follows:

1. Algorithm 1lI

(i) Perform steqi) of Algorithm 1.
(ii) For each statev, perform stepdii), (iii), and (iv)

(computingen passantAF ),
quantities bearingr as a superscripAF7{,- - -

(i) Reweight the states: this is a crucial step, motivated
in Ref. [3]. The states with lonAF{,, have to be favored.

of Algorithm |. One gets

FIG. 9. dF/dx vs x for the binary spin glass in the cake-2 at
T=0.5; the continuous line is the polynomial fit of degree 4.

E AEge—ﬁxAF‘l’
o
AE]_:_ ’
E ef,BxAFf
o

(38

and their obvious analogs faxF, and AE,. Note that it is
essential that the sites and couplings be the same for all the
in step(ii) above.

In practice, we found that the implementation of this al-
gorithm in the case of the Gaussian couplings requires too
many computer resources to reach a satisfying accuracy. So
we limited ourselves to the case of binary couplings.

B. Application to the binary spin glass

We considered the binary spin glass of Sec. V, at tempera-
ture T=0.5. Our implementation used the valu&s=1000
and M=1000. We computedF/dx for several values of.
The result is presented is Fig. 9. To determine the value
of x wheredF/dx is zero, we fitted the curve by a polyno-
mial of degree 4, and found its roots. We gdt=0.191).
Then we measured the thermodynamic quantities Xor
=x*, taking into account the uncertainty & :

F=-1.280:0.001, E=—1.265+0.001,
(39)
$=0.029+0.001.

Thus one picks upM times an element in the list of distri-

butionspg ,@=1, ... M with a probability proportional to o )

exp(— BXAFL,). The resulting list overwrites the one at site  11iS iS to be compared to the output of the replica sym-
®. [Note that the elements one picks up are composite opM€tric algorithm of Sec. V:

jects, i.e., either a set of R¢+ 1) numbers or a population of

R coupled. F=-1.2816+0.0008, E=—1.2685-0.0006,

(iv) Compute the global average values of the observables (40)

AF,,---. The formulas can be found in Ré8]:

AFl:—%In (37)

% E eﬁxAFf},

S=0.0274+-0.0008.

The overall improvement is small, particularly énlt is
more obvious orE andS but still only of the order of 10°.
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VIll. CONCLUSION temperature limit of the pure states: recently 2dedl and
. . Parisi[4] presented a computation at 1RSB level of the num-
In this paper, we have described a general procedure

compute the number of one-spin-flip stable configurations on er of locally ground stated-GS), i.e., configurations stable
the Bethe lattice. Given some intege® 2, the method—at with respect tgp-spin flips with the numbep going to infin-

. . ity with the size of the system in some unprecised way, and
least conceptually—can be easily generalized to compute tI} ey found some surprising features. There is a need for

”“mber ofp-spin-fiips stable conf|glura}t|ons, l.e., whose €N more precise definitions, and one of the points at issue is
ergies cannot be decreased by flipping a number of spin

ranging from 1 top. The practical difficulty is that the recur- ﬁ_ow these LGS are related spin flips stable configura-
i : . " tions whenp— +oo.

sion relations can no longer involve only quantities related to

the root of a branch, but must also take into accountphe
—1 successive generations of spins. In the cpse?, it

remains quite straightforward to write down the equations,

but we have not worked out their solution. It might be inter- We acknowledge very useful discussions with F. Ricci-

esting to do so in order to clarify the nature of the zeroTersenghi.
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